Main Content

Cook’s distance is the scaled change in fitted values, which is useful for identifying outliers in the *X* values (observations for predictor variables). Cook’s distance shows the influence of each observation on the fitted response values. An observation with Cook’s distance larger than three times the mean Cook’s distance might be an outlier.

Each element in the Cook's distance *D* is the normalized change in the
fitted response values due to the deletion of an observation. The Cook’s distance of
observation *i* is

$${D}_{i}=\frac{{\displaystyle \sum _{j=1}^{n}{\left({\widehat{y}}_{j}-{\widehat{y}}_{j(i)}\right)}^{2}}}{p\text{\hspace{0.17em}}MSE},$$

where

$${\widehat{y}}_{j}$$ is the

*j*th fitted response value.$${\widehat{y}}_{j(i)}$$ is the

*j*th fitted response value, where the fit does not include observation*i*.*MSE*is the mean squared error.*p*is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

$${D}_{i}=\frac{{r}_{i}^{2}}{p\text{\hspace{0.17em}}MSE}\left(\frac{{h}_{ii}}{{\left(1-{h}_{ii}\right)}^{2}}\right),$$

where *r*_{i} is
the *i*th residual, and *h*_{ii} is
the *i*th leverage value.

After fitting the model `mdl`

, for example, you can use `fitlm`

or `stepwiselm`

to:

Display the Cook’s distance values by indexing into the property using dot notation.

mdl.Diagnostics.CooksDistance

`CooksDistance`

is an*n*-by-1 column vector in the`Diagnostics`

table of the`LinearModel`

object.Plot the Cook’s distance values.

For details, see theplotDiagnostics(mdl,'cookd')

`plotDiagnostics`

function of the`LinearModel`

object.

This example shows how to use Cook's Distance to determine the outliers in the data.

Load the sample data and define the independent and response variables.

```
load hospital
X = double(hospital(:,2:5));
y = hospital.BloodPressure(:,1);
```

Fit the linear regression model.

mdl = fitlm(X,y);

Plot the Cook's distance values.

`plotDiagnostics(mdl,'cookd')`

The dashed line in the figure corresponds to the recommended threshold value, `3*mean(mdl.Diagnostics.CooksDistance)`

. The plot has some observations with Cook's distance values greater than the threshold value, which for this example is 3*(0.0108) = 0.0324. In particular, there are two Cook's distance values that are relatively higher than the others, which exceed the threshold value. You might want to find and omit these from your data and rebuild your model.

Find the observations with Cook's distance values that exceed the threshold value.

find((mdl.Diagnostics.CooksDistance)>3*mean(mdl.Diagnostics.CooksDistance))

`ans = `*10×1*
2
13
28
44
58
70
71
84
93
95

Find the observations with Cook's distance values that are relatively larger than the other observations with Cook's distances exceeding the threshold value.

find((mdl.Diagnostics.CooksDistance)>5*mean(mdl.Diagnostics.CooksDistance))

`ans = `*2×1*
2
84

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. *Applied Linear Statistical Models*. 4th ed. Chicago: Irwin, 1996.

`LinearModel`

| `fitlm`

| `stepwiselm`

| `plotDiagnostics`